
International Journal of Theoretical Physics, Vol. 2, No. 3 (1969), pp. 201-211. 

Causality Restrictions on Relativistic Extensions 
of Particle Symmetries~ 

P. R O M A N  and R. M. SANTILLI  

Department of Physics', Boston University, 
Boston, Massachusetts 02215 

Received: 26 March 1969 

Abstract 

Relativistic extensions of internal hadron symmetry groups are investigated from the 
viewpoint of causality requirements. Zeeman's group theoretical definition of causality is 
adopted and various physically interesting structures of relativistic extensions are studied 
from the viewpoint of whether they preserve or violate causality. Four theorems that 
guarantee causality preservation, and three theorems that violate it are deduced. It is 
concluded that there does not exist a non-trivial coupling of the Poincar6 group and an 
internal symmetry group, such as SU(3) or SU(6), preserving causality in a Minkowski 
space. Extensions in complex or in curved manifolds are briefly discussed. 

1. Introduction 

Since the celebrated McGlinn theorem (McGlinn, 1964; Coester, et al., 
1964) of  1964, a large number of papers have been devoted to the coupling 
of the Poincar6 group P with an internal hadron symmetry group S. 

From a group theoretical viewpoint it has been proved that non-trivial 
couplings of  P and S are certainly well-defined structures. 

On the ground of physical applications however, the non-existence of 
mass splittings has been proved in many different frameworks (O'Raifear- 
taigh, 1965a, 1967a, b; Jost, 1966; Roman & Koh, 1965; Wegel, 1967; 
Coleman & Mandula, 1967). Although the 'no-go'  theorems do not 
absolutely forbid a mass splitting, they are so strong that its existence 
practically requires some peculiar assumptions such as: infinite parameter  
Lie groups or algebras (Formanek, 1966); non-integrable or partially 
integrable representations (Doebner & Melsheimer, 1966); non-Lie algebras 
such as associative algebras (Bohm, 1967; Nakamura ,  1967) or Lie-admissible 
algebras (Santilli, 1968b, 1968c). 

As a complementary aspect of the above 'no-go'  theorems, in the present 
paper we investigate the problem of the coupling of space-time and internal 
symmetries f rom a causality viewpoint. 

In this connection a group theoretical definition of causality introduced 
by Zeeman (1964) is of particular interest. Zeeman introduces a partial 
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ordering of a Minkowski space M if an event in x ~ M can influence an 
event in y ~ M, according to 

x < y  

if  and only if (x  - y)2 = (x o _ yO)2 _ (x - y)2 > 0 and x ~ < yO. 
Without any preliminary assumption of linearity or continuity, Zeeman 

proves that the largest group of automorphisms of the Minkowski space 
preserving the partial ordering, called the causality group C, is constituted 
by: 

(i) the group D of dilatations in M; 
(ii) the orthochronous Poincar6 group P I'; 

and performs the map 

x -+ x'  = XA~x + a; a ~ D, (A t ,  a) ~ P t ,  x ~ M 

Our problem essentially consists of investigating the action on the 
partial ordering of a larger group G containing as subgroup the Poincar6 
group P and an internal hadron symmetry group S. 

In the following we always consider finite-parameter Lie groups and we 
assume for P a connected component of the orthochronous group P~;  
'causality' always refers to Zeeman's causality in a (3 + 1)-dimensional 
Minkowski space M; finally, we denote by • | or +, @, the direct and 
semidirect product, or the direct and semidirect sum, respectively. 

2. Extensions Preserving Causality 

We call a 'couple' (G; G'), where G' is a subgroup of a group G, a transitive 
couple if G acts transitively on the homogeneous space H = G/G'. In 
connection with our problem, we are interested in the couple of Lie groups 
(P; L), where P is the connected Poincar6 group and L its homogeneous 
Lorentz subgroup. (P; L) is a transitive couple since, as is well known, P 
acts transitively on the Minkowski space M = P/L. 

We call a 'triple' (G; G', G"), where G' and G" are subgroups of a Lie group 
G, a transitive decomposition of G if G' is transitive on the homogeneous 
space H1 = G/G" or G" is transitive on H2 = GIG'. Then (Oni~cik, 1966) 
any element g ~ G can be given the form g = g'g" with g' ~ G' and g" c G". 
Conversely, if the imbeddings of two Lie groups G' and G" in a larger Lie 
group G satisfies the assumption that any g e G can be given the form 
g = g'g" with g' e G' and g" ~ G", then the triple (G; G', G") constitutes a 
transitive decomposition. 

The above property of the elements of transitive decompositions coincides 
with the minimality requirements (Greenberg, 1964; Michel, 1965) of the 
coupling of the connected Poincar6 group P with an internal symmetry 
group S. Thus any triple (G; P, S) satisfying the minimality requirement is a 
transitive decomposition. 
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We call a transitive decomposition (G; G', G") a semidirect decomposition 
if G = G' | G". A necessary and sufficient condition that a transitive 
decomposition (G; G', G") be a semidirect decomposition is that for one 
element g' ~ G', not contained in an invariant subgroup ofG' ,  g', g" g,-1 E G" 
for all g" ~ G" (Michel, 1965). 

Theorem 1 : Let (G; P, S) be a transitive decomposition of a Lie group G 
with respect to the connected Poincar6 group P and a connected semi- 
simple group S. If  S commutes with the homogeneous Lorentz group L 
and P fq S = {1}, then G preserves causality on the Minkowski space 
M = P / r .  

Proof: We consider the coset space H = G/L and we assume for elements 
of H the subsets of G of the right coset form 

L g = ( t g l t ~ L , g ~ G )  

Corresponding to a g ivenf~  G let 

-+ crf ( Lg) 

be a mapping of G into the permutation group of the set (Lg) of all right 
cosets of L with 

~f 
~rr(Lg)=(Lg > L g f  - l )  

The mapping f - +  ~r e is a homomorphism, since creepY' = crey' for any f ,  
f '  ~ G. Since (G; P, S)  is a transitive decomposition, and by recalling that the 
decomposition g =ps,  with g ~ G, p G P and s e S, is unique from P N S = 
{1} (Michel, 1965), we have (Lg)=(Ps )  and cr~'(Lg)= ~rY(Ps). Consider 
now the mapping cr t for l e L. Since S commutes with L 

at(Ps) = (Psi -1) = (P(sls-1) - '  s) = (Ps) 

This implies that p c  Ker(cr) since, from s t s - l =  l, L is in Ker(a)  and 
Ker(a)  f'l P is an invariant subgroup of  P. Consequently 

 ,p(es) = ( f s )  

for all p E P, and P is an invariant subgroup of G. Finally, consider the 
automorphisms of P 

m s = (p']p' ~= sps -I ; p e P ,  s ~ S)  

The mapping s -+ m ~ is a homomorphism of  S into a Aut(P).  Since S is 
semisimple and connected, it follows that (Michel, 1965; Hergfeldt & 
Hennig, 1969) m~= I, i.e. sps -~ =p .  Thus S is mapped into the identity 
element of  the center ofAut  (P). But in the structure of Aut(P)  the connected 
Poincar6 group P is recovered by the invariant subgroup of inner auto- 
morphisms Int(P)  =Au t  (P) (since P has no center), and the factor group 
Aut (P)/Int(P)  is isomorphic (modulo a cyclic group of two elements) 
to the group of dilatations D (Michel, 1965). Thus, under the mapping 
s -+ m s, S is mapped into the identity element of the subgroup of dilatations 
of the causality group, and G preserves causality. 
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Theorem 2: Let (G; P, S) be a semidirect decomposition of a topological 
group G with respect to the connected Poincar6 group P and a group S 
as topological subgroups. If  S is compact, then G preserves causality on 
the Minkowski space M = P/L. 

Proof: The group of all inner automorphisms Int(S)  of a compact 
topological group S is a compact invariant subgroup of all continuous 
automorphisms Aut(S)  of S (Iwasawa, 1949). Consequently, under the 
mapping 

p - + m  v = (s ' ls '  =psp-~;p  ~ P , s  ~ S )  

P is imbedded into Int(S),  since P is connected. Furthermore, the mapping 
p - +  m p is the identity mapping since there does not exist a non-trivial 
continuous unitary finite-dimensional representation of P (Roskies, 1966). 
Conversely, the mapping 

s ~ m  s = (p '[p '  = sps - l ; p  cP ,  s c S) 

is the identity mapping too, and a situation equivalent to the one of Theorem 
1 occurs. Thus, structures of the type 

G = r | { S U ( n )  x L}  

preserves causality. 

Theorem 3: Let (G; P, S )  be a transitive decomposition of a Lie group G 
with respect to the connected Poincar6 group P and a group S. If  S 
commutes with the homogeneous Lorentz group L and there does not exist 
an inner automorphism ~7 of G mapping the one-parameter subgroup 
p(t)  ~ P  of temporal displacements according to ~Tp(t)~/-1= ~(~l)p(-t), 
with ~(~7) a real number, then G preserves causality on the Minkowski 
space M = P/L. 

Proof: Since S commutes with L by assumption, if S commutes with the 
translational subgroup T too, then causality is preserved as in Theorem 1. 
I f  S does not commute with T, then there exists a non-trivial real one- 
dimensional representation ~(s) (i.e. S has a non-trivial abelian factor group) 
such that S acts on translations according to (Greenberg, 1964) 

s~s  -~ = ~(s) 

with a(s) a real number, for any s c S and r c T. By recalling that space 
inversions preserve the partial ordering, the condition of non-existence of 
inner automorphisms of G performing the mapping of the one-parameter 
sub-group of temporal displacementp(t) on top ( - t )  ensures the preservation 
of time ordering, and G preserves causality. 

Theorem 4: Let (G; P, S) be a semidirect decomposition of a Lie group G 
with respect to the connected Poincar~ group P and a group S. If  one of 
the following conditions holds: 

(a) S is a semisimple group containing a subgroup isomorphic to the 
homogeneous Lorentz group L;  
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(b) there is at least one element p0 in the Lie algrebra p of P such that 
[/'0,P] = [_s,_p] for any_p ~ y and _s in the Lie algebra S of S; 

(c) there is at least one element _s o ~ S such that [_So, _S] = [p, _s] for any 
p ~Pand_SE S; 

then t-here exists a redefinition/3 of P or ~ of S such that G preserves 
causality in/3/L or in P/L, respectively. 

Proof: For case (a) there exists a redefinition/3 of P such that (Fleischman 
& Nagel, 1967; Roskies, 1966; Ottoson, et al., 1965) the mapping 

s - +  m s = ( F I P '  = s~s-~;l~ ~/3, s E s )  

is the identity mapping. Thus, as in Theorem 1, S is mapped into the center 
of Aut (/3) and G preserves causality with respect to the redefined decomposi- 
tion (G;/3, S). If  S is a semisimple group containing no subgroups iso- 
morphic to L, then/3 = P (Fleischman & Nagel, 1967; Roskies, 1966) and 
G preserves causality without redefinition. 

Corresponding to case (b), let us recall that the derivation algebra 
Der(_P) of _P is given by a semidirect sum of _P and a one-dimensional 
algebra _D, i.e. Der(_P) = P @ _D. Since p has no center, a homomorphism 
of S into Der(_P) is either a homomorphism into the algebra of inner 
derivation of_P or a homomorphism into the center of Der(P). Condition 
(b) corresponds to the assumption that _S can be mapped into the inner 
derivation of _P. But then there exists a redefinition ~ or S such that G is 
given by the direct sum G = _P + $ (Mugibayashi, 1966). This implies that _~ 
is mapped into the center of Der(_P). Then there exists a redefinition ~r of 
S such that the mapping 

_+ m ~ = ( p , l p ,  = gp~-l; p e p,  ~ ~)  

is the identity mapping, and G, as for Theorem 1, preserves causality with 
respect to the redefined decomposition (G; P, S). 

Similarly, if assumption (c) holds, on the basis of results equivalent to 
(b) with P and S interchanged (Hergfeldt & Hennig, 1969), there exists a 
redefinition/3 of P such that the mapping 

s -+ mS = (~'lfi '  = s~s-l ; ~ ~ /3, s E S )  

is the identity mapping and G preserves causality with respect to the 
redefined decomposition (G;/3, S). 

3. Extensions Violating Causality 

In this section we derive three theorems which illustrate that the most 
interesting non-trivial extensions are bound to violate causality. 

Theorem 5: Let (G; P, S) be a semidirect decomposition of a connected 
Lie group G with respect to the connected Poincar6 group P and a 
semisimple non-compact group S larger than the Lorentz group L and 
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containing a subgroup isomorphic to it. If  S does not commute with L, 
the G violates causality on the Minkowski space M = P/L. 

Proof." Let us consider the coset space Pg= (pg]p ~P ,g  ~ G). Since 
(G; P, S) is a semidirect decomposition, the set of all right cosets (Pg) of 
Pg is (Pg) = (Psi s E S). Let, f o r f ~  G, a mapping of G into the permutation 
group of (Ps) be given by 

f -+ a~'(ps) = (psf  -a) 

L e t f  = l ~ L. Since L does not commute with S, et(Ps) r (Ps). Thus P is not 
longer in Ker(~r) and S cannot be mapped into the identity element of the 
subgroup of dilatations of the causality group. Consequently, since S is 
larger than the Lorentz group and contains a subgroup isomorphic to it, 
violation of causality follows from the property that L is the largest semi- 
simple group preserving the partial ordering. 

As an explicit example, let us consider the semidirect decomposition 

G = P  | SU(3.1) 

Let W~v (/z, v = 0, 1, 2, 3) be the Weyl basis of SU(3.1) with the usual 
decomposition in symmetric and antisymmetric components 

where A,~ span an algebra isomorphic to _L. Then violation of causality can 
be seen, for instance, by noting that there exist in G the set of elements 
induced by the symmetric generators S, ,  which do not preserve causality 
since they do not preserve the real form (x - y)2 in the defining conditions 
of the partial ordering. 

Theorem 6: Let G be a simple Lie group containing as subgroup the 
connected Poincar6 group P. Then G violates causality on the Minkowski 
space M = P/L. 

Proof." All possible transitive decompositions of complex simple Lie 
algebras G according to (G; G_', G") have been classified (Onigcik, 1966) 
and are summarized in Table 1, where _/9 denotes a one-dimensional algebra. 
We now consider the real compact forms of the Lie algebras of the above 
classification and all the corresponding non-compact real forms obtained 
by means of inner involutive automorphisms (Gantmacher, 1939). By 
inspection we see that there does not exist a real non-compact form of G' 
or of G" isomorphic to the Lie algebra of the Poincar6 group. Thus there 
does not exist a simple Lie group G admitting a transitive decomposition 
(G; P, G") or (G; G', P)  with respect to the connected Poincar6 group P. 
Consequently, in all possible transitive decomposition (G; G', G") of 
(non-compact) simple Lie groups G, P is contained in a simple subgroup of 
G' or of G". This proves the violation of causality since on one hand the 
'closure' of P = L | T in a simple group requires supplementary non- 
abelian generators (as for the conformal group), and on the other hand P, 
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modulo the abelian one-dimensional group of dilatations, is the largest 
group preserving the partial ordering. 

TABLE 1 

_G T _G" G _G' _G" 

-A2n-2 0 8 _9 7 _9 4 ~A2n-1 C n 
n > 1 32.-2 Q O 

& 
-92 

83 G2 B2 | D -92 | P 

-1)3 
_D4 83 _92 | d, 

_O.+i _9. 
n > 1 _An @ _D _D 3 

C. _03 |  
P2. B2.-1 _C. | p 

G |  _93 

For instance, for all the groups of the classes SU(pq),  p ~ 2, q >~ 2; 
SO(p,q), p >~ 4, q ~ 2; Sp(p,q), p >~ 2, q ~ 2; P is  contained: 

(i) as subgroup of SU(2.2), corresponding for instance to _A 3 in a 
transitive decomposition connected to (_/)4; -93, _//3); 

(ii) as subgroup of SO(4.2), corresponding for instance to D 3 in a 
transitive decomposition connected to (/13 ; _Gz, _D2); 

(iii) as subgroup of any larger group containing SU(2.2) or SO(4.2). 

But the conformal group SO(4.2) does not preserve causality since, for 
instance, it violates the lemma 4 of the Zeeman paper (Zeeman, 1964) 
stating that each light ray in M is mapped linearly by any element of the 
causality group. By noting that SO(4.2).= SU(2.2)/Z2 (Kihlberg, 1966), 
and by recalling that any G' or G" of the transitive decomposition of the 
above groups, containing P a subgroup, must contain also as a subgroup 
the minimality group SU(2.2) or SO(4.2), the violation of causality follows 
for any group of the above classes. 
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In a more usual language, one can introduce as a minimality example the 
well known realization of the conformal algebra according to 

S__O(4.2) = S___U(2.Z) --- (Muv, P,, D, A,;/x, v = 0, 1,2, 3) 

where Mj,~, P ,  and D are the generators of the Lie algebra of the causality 
group and A~, are the accelerations. Then there exist in the conformal group 
four elements induced by A,  which do not preserve causality since the A,'s 
are non-linear. 

Theorem 7: Let G be a Lie group containing as subgroup the connected 
Poincar6 group P. If  the homogeneous Lorentz group L is imbedded in 
a larger simple subgroup of G, then G violates causality on the Minkowski 
space M = P/L. 

Proof: Let us consider the Levi decomposition of the Lie algebra G of G 

_G=R| 
where R is the radical and _Fis the Levi factor, i.e. a semisimple Lie algebra. 
As is known (O'Raifeartaigh, 1965b), since P c _G, the homogeneous 
Lorentz subalgebra _L of_P is contained in _Fin such a way that [_R, L] c R. 
Since AdL acts irreducibly on the translational subalgebra T of P, one has 
either T n R_ = 0, or T N R = T. Thus the following cases are possible: 

(a) T=8 ;  
(b) TN _R=0; 
(c) T c R_, R abelian or non-abelian and solvable. 

Let 

_G=gQ k=i-Fk 

where .Fk's are the totality of simple ideals in the decomposition of the Levi 
factor. Case (a) has been classified according to one of the two possibilities 
(Hergfeldt & Hennig, 1969) 

k = t l  

(I) _G=(T| + F~; 
k=2 

k ~ R  

(2) _G = (_T @ SL(4,R)) + _Fg. 
- -  k ~ 2  

Subcase (1) is excluded by the assumption of the Theorem. Subcase (2) 
violates causality, since SL(4,R), as SU(3.1) in the example of Theorem 5, 
does not preserve the defining conditions of the partial ordering. Case (b) 
reduces to Theorem 6, since it implies the imbedding of P in a simple algebra. 
Similarly the non-preservation of causality follows for case (c), since it 
implies the presence of a simple ideal in the decomposition of the Levi 
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factor larger than and containing a subgroup isomorphic to L. As a particular 
example of case (c) one sees that the well-known relativistic extension 
of SU(6) 

G = SL(6, c) | T36 

violates causality. 

4. Concluding Remarks 

As we have seen, the preservation of causality practically restricts the 
coupling of the Poincar6 group P with an internal hadron symmetry group S 
to trivial structures, such as the ones of Theorems 1, 2 and 3. 

This result is so strong that it supports the idea of an enlargement of the 
basic homogeneous space M = P/L according to an extended space 

H =  G/C 

where (G; C) is a transitive couple. 
A first restriction for a minimality enlargement can be introduced by 

considering only transitive couples (G; C) which are able to reproduce 
under contraction the basic couple (P; L). An alternative, weaker restriction 
could be to consider an extension G of P which can reproduce under con- 
traction the Poincar6 group P. Supplementary restrictions could be intro- 
duced so as to admit physical interpretations, for instance, in connection 
with the existence of a one-parameter subgroup of temporal displacements. 

In this way, as an example of enlargement, one gets the so-called 
'physically admissible Lie groups' (Segal, 1967; Castell, 1968) which are 
connected Lie groups G such that 

(A) a subgroup of G gives rise, via the In/Snii-Wigner contraction, to 
the connected component of the Poincar6 group; 

(B) there exist in G a one-parameter subgroup p(t) which can be 
interpreted as the subgroup of temporal displacements; 

(C) there does not exist in G an inner automorphism 7/ such that 
~p(t)~7 -I = cff~l)p(-t ), with ~(~7) a real number. 

The above enlargements allow the assumption, for instance, of the simple 
non-compact groups of the SO(2,p) class, with p = 3, 4, 5 . . . . .  which are 
contractible to SO(1,p) | Tl+p (Castell, 1968). 

The most interesting aspect of the above approach is that now H can be 
irreducible Riemannian globally symmetric space (Helgason, 1962). Such 
extensions of particle symmetries on curved manifolds, for instance 
according to the DeSitter group (Roman & Aghassi, 1966), open up new 
possibilities of combining internal and space-time symmetries for which the 
results of the present paper have no relevance. 

A second class of enlargements can be introduced without recursion to 
the In/Snti-Wigner contraction, by performing a complex extension ~ of 
the Minkowski space (Barut, 1964). In this connection it has been shown 
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(Santilli, 1968a) that a complex partial ordering can be introduced for any 
couple of points zl, z2 ~ M, with z~ = xl  + iyl and z2 = xz + iy2, according 
to 

ZI < c  Z2 

if (xl - x2) z > 0, xl ~ < yl ~ and (x2 - y2) 2 > 0, x2 ~ < y2 ~ The group of 
causal automorphisms on M preserving the above partial ordering is then 
isomorphic, modulo a dilatation and the preservation of time orderings, to 
the group of transformations leaving invariant the quadratic form 

(2" 1 - -  Z 2 ) ( Z  1 - -  Z2)  ~- (ZI  0 - -  Z20)  2 - -  (Z 1 - -  Z2)  2 

In this way one gets a complex causality group of orthogonal type given by 
Santilli (1968a) 

Corr. = D | (T | L]') = D | PI' 

where P]' is the 20-parameter inhomogeneous complex Lorentz group 
preserving time orientations. 

A second extension of the Zeeman causality can be investigated by con- 
sidering partial orderings in ~r  expressed in terms of the real Hermitean 
form 

(z1 - z2)(~l - ~2) ~ lZl ~ - z2~ 2 - [Zl - z2l 2 

Conceivably, in this case one would get a complex causality group Cun~t of 
unitary type expressible in terms of  the inhomogeneous SU(3.1)  group 

ISV(3.1) = V | SV(3.1) 

which represents an interesting possibility of  a non-trivial coupling of  the 
Poincar6 group and the SU(3) group preserving causality in a complex 
space. Investigations along these lines are in progress. 

Furthermore, the complex extension )Q of the Minkowski space M is 
physically supported by procedures such as the analytical continuation of 
Wightman functions (then a complex causality group of orthogonal type 
is directly involved), or the partial wave analysis of S-matrix elements in 
connection with Toiler-like investigations of Regge daughter trajectories 
(Toiler, 1968) (then both causality groups of orthogonal and &uni tary  type 
seem to be promising). 

We thus conclude that there does not exist a non-trivial coupling of the 
Poincar6 group and an internal hadron symmetry group, such as SU(3) 
or SU(6) ,  preserving causality in Minkowski space. On the contrary, 
interesting possibilities for non-trivial links might exist for extensions in 
complex or in curved manifolds. 

Acknowledgement  

One of us (R.M.S.) wishes to thank Dr. Kenneth D. Johnson for interesting con- 
versations. 



CAUSALITY RESTRICTIONS ON RELATIVISTIC EXTENSIONS 211 

References 

Barut, A. O. (1964). Lectures in Theoretical Physics, Vol. VIIa. Boulder. 
Bohm, A. (1967). Physical Review, 158, 1408. 
Castell, L. (1968). Nuclear Physics, 5, B601. 
Coester, F., Hamermesh, M. and McGlinn, W. D. (1964). Physical Review, 135, B451. 
Coleman, S. and Mandula, J. (1967). Physical Review, 159, 1251. 
Doebner, H. D. and Melsheimer, O. (1955). Nato International Advanced Study Institute, 

Istanbul. 
Fleischman, O. and Nagel, J. G. (1967). Journal of Mathematics and Physics, 7, 1128. 
Formanek, J. (1966). Czechoslovak Journal of Physics, B16, 1,281. 
Gantmacher, F. (1939). Matematische Sitzungberichte, 5 (47), 101,218. 
Greenberg, O. W. (1964). Physical Review, 135, B1447. 
Helgason, S. (1962). Differential Geometry and Symmetric Spaces. Academic Press. 
Hergfeldt, C. G. and Hennig, J. (1969). Fortschritte der Physik. In press. 
Iwasawa, K. (1949). Annals of Mathematics, 50, 507. 
Jost, R. (1966). Helvetica Physica acta, 39, 369. 
Kihlberg, A., Mtiller, V. F. and Halbwachs, F. (1966). Communication in Mathematical 

Physics, 3, 194. 
McGlinn, W. D. (1964). Physical Review Letters, 12, 467. 
Michel, L. (1965). Physical Review, 137, B405. 
Mugibayashi, N. (1966). Progress of TheoreticalPhysics, 35, 315. 
Nakamura, M. (1967). Progress of TheoreticalPhysics, 37, 195. 
Oni~cik, A. L. (1966). American MathematicalSociety Translations, (2) 50, 235. 
Ottoson, U., Kihlberg, A. and Nilsson, J. (1965). Physical Review, 137, B658. 
O'Raifeartaigh, L. (1965a). Physical Review Letters, 14, 575. 
O'Raifeartaigh, L. (1956). Physical Review, 139, 1052. 
O'Raifeartaigh, L. (1967a). Physical Review, 161, 1571. 
O'Raifeartaigh, L. (1967b). Physical Review, 164, 2000. 
Roman, P. and Koh, C. J. (1965). Nuovo cimento, 39, 1015. 
Roman, P. and Aghassi, J. J. (1966). Journal of Mathematical Physics, 7, 1273, and 

papers quoted therein. 
Roskies, R. (1966). Journal of Mathematical Physics, 7, 395. 
Santilli, R. M. (1968a). Nuovo cimento, 55, B578. 
Santilli, R. M. (1968b). Contributed paper to the Indiana Symposium, Bloomington, to 

appear in the Proceedings, to be published by Gordon and Breach. 
Santilli, R. M. (1968c). Supplemento al Nuovo Cimento, 4, 1225. 
Segal, I. (1967). Proceedings of the National Academy of Sciences of the United States of 

America, 57, 294. 
Toller, M. (1968). Symmetry Principles at High Energy. W. A. Benjamin, Inc., Coral 

Gables. 
Wegal, I. (1967). Journal of Functional Analysis, 1, 1. 


